Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Int J Mol Sci ; 23(11)2022 Jun 06.
Article in English | MEDLINE | ID: covidwho-2253263

ABSTRACT

Benzo[a]pyrene (B[a]P) is the main representative of polycyclic aromatic hydrocarbons (PAHs), and has been repeatedly found in the air, surface water, soil, and sediments. It is present in cigarette smoke as well as in food products, especially when smoked and grilled. Human exposure to B[a]P is therefore common. Research shows growing evidence concerning toxic effects induced by this substance. This xenobiotic is metabolized by cytochrome P450 (CYP P450) to carcinogenic metabolite: 7ß,8α-dihydroxy-9α,10α-epoxy-7,8,9,10-tetrahydrobenzo[a]pyrene (BPDE), which creates DNA adducts, causing mutations and malignant transformations. Moreover, B[a]P is epigenotoxic, neurotoxic, and teratogenic, and exhibits pro-oxidative potential and causes impairment of animals' fertility. CYP P450 is strongly involved in B[a]P metabolism, and it is simultaneously expressed as a result of the association of B[a]P with aromatic hydrocarbon receptor (AhR), playing an essential role in the cancerogenic potential of various xenobiotics. In turn, polymorphism of CYP P450 genes determines the sensitivity of the organism to B[a]P. It was also observed that B[a]P facilitates the multiplication of viruses, which may be an additional problem with the widespread COVID-19 pandemic. Based on publications mainly from 2017 to 2022, this paper presents the occurrence of B[a]P in various environmental compartments and human surroundings, shows the exposure of humans to this substance, and describes the mechanisms of its toxicity.


Subject(s)
COVID-19 , Polycyclic Aromatic Hydrocarbons , Animals , Benzo(a)pyrene/toxicity , Carcinogens , Cytochrome P-450 Enzyme System/genetics , DNA Adducts , Humans , Pandemics , Polycyclic Aromatic Hydrocarbons/metabolism , Polycyclic Aromatic Hydrocarbons/toxicity
2.
Front Public Health ; 9: 730369, 2021.
Article in English | MEDLINE | ID: covidwho-1775858

ABSTRACT

Background: Increasing evidence suggests that exposure to air pollution during pregnancy is associated with adverse pregnancy outcomes. However, biomarkers associated with air pollution exposure are widely lacking and often transient. In addition, ascertaining biospecimens during pregnacy to assess the prenatal environment remains largely infeasible. Objectives: To address these challenges, we investigated relationships between air pollution exposure during pregnancy and human serum albumin Cys34 (HSA-Cys34) adducts in newborn dried blood spots (DBS) samples, which captures an integration of perinatal exposures to small reactive molecules in circulating blood. Methods: Newborn DBS were obtained from a state archive for a cohort of 120 children born at one Kaiser Permanente Southern California (KPSC) hospitals in 2007. These children were selected to maximize the range of residential air pollution exposure during the entire pregnancy to PM2.5, PM10, NO2, O3, based on monthly estimates interpolated from regulatory monitoring sites. HSA-Cys34 adducts were selected based on previously reported relationships with air pollution exposure and oxidative stress. Results: Six adducts measured in newborn DBS samples were associated with air pollution exposures during pregnancy; these included direct oxidation products, adducts formed with small thiol compounds, and adducts formed with reactive aldehydes. Two general trends were identified: Exposure to air pollution late in pregnancy (i.e., in the last 30 days) was associated with increased oxidative stress, and exposure to air pollution earlier in pregnancy (i.e., not in the last 30 days) was associated with decreased oxidative stress around the time of birth. Discussion: Air pollution exposure occurring during pregnancy can alter biology and leave measurable impacts on the developing infant captured in the newborn DBS adductome, which represents a promising tool for investigating adverse birth outcomes in population-based studies.


Subject(s)
Air Pollutants , Air Pollution , Air Pollutants/analysis , Air Pollutants/toxicity , Air Pollution/analysis , Air Pollution/statistics & numerical data , Child , Cohort Studies , DNA Adducts/blood , Female , Humans , Infant , Infant, Newborn , Pregnancy , Serum Albumin, Human
3.
Chem Res Toxicol ; 33(10): 2668-2674, 2020 10 19.
Article in English | MEDLINE | ID: covidwho-745890

ABSTRACT

Inflammation is an immune response to protect against various types of infections. When unchecked, acute inflammation can be life-threatening, as seen with the current coronavirus pandemic. Strong oxidants, such as peroxynitrite produced by immune cells, are major mediators of the inflammation-associated pathogenesis. Cellular thiols play important roles in mitigating inflammation-associated macromolecular damage including DNA. Herein, we have demonstrated a role of glutathione (GSH) and other thiols in neutralizing the effect of peroxynitrite-mediated DNA damage through stable GSH-DNA adduct formation. Our observation supports the use of thiol supplements as a potential therapeutic strategy against severe COVID-19 cases and a Phase II (NCT04374461) open-label clinical trial launched in early May 2020 by the Memorial Sloan Kettering Cancer Center.


Subject(s)
DNA Adducts/drug effects , DNA/drug effects , Glutathione/pharmacology , Inflammation/physiopathology , Peroxynitrous Acid/adverse effects , Acute Disease , Animals , Betacoronavirus , COVID-19 , Cattle , Coronavirus Infections/drug therapy , DNA/chemistry , DNA Adducts/chemistry , DNA Damage , Glutathione/chemistry , HEK293 Cells , Humans , Mutagens/chemistry , Mutagens/pharmacology , Pandemics , Peroxynitrous Acid/chemistry , Pneumonia, Viral/drug therapy , SARS-CoV-2 , Salmonella typhimurium/genetics
SELECTION OF CITATIONS
SEARCH DETAIL